- Conwell, E. (1988). In Semiconductors and Semimetals, Vol. 27. New York: Academic Press.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G.,
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Mizuguchi, J. (1981). Krist. Tech. 16, 695-700.
- Wheland, R. C. & Martin, E. I. (1975). J. Org. Chem. 40, 3101-3109.
- Zambounis, J. S., Mizuguchi, J., Rihs, G., Chauvet, O. & Zuppiroli, L. (1994). J. Appl. Phys. 76(3). In the press.

Acta Cryst. (1994). C50, 2007-2009

4-tert-Butyl-2,6-bis[(4-methyl-1piperazinyl)methyl]phenol

S. Shanmuga Sundara Raj, D. Velmurugan* and E. Subramanian

Department of Crystallography and Biophysics,† University of Madras, Guindy Campus, Madras 600 025, India

M. KANDASWAMY

Department of Inorganic Chemistry, University of Madras, Guindy Campus, Madras 600 025, India

(Received 20 May 1993; accepted 10 January 1994)

Abstract

In the title compound, $C_{22}H_{38}N_4O$, both the piperazine rings are in perfect chair conformations and the substituents attached to the N atoms of the piperazine rings are in equatorial positions. The tertiary butyl group is oriented in such a way that the plane of the phenyl group nearly bisects the angle between two of the methyl C atoms of the butyl group, while the third methyl C atom lies in the plane of the phenyl ring.

Comment

The X-ray structure analysis of the title compound, (I), a binucleating ligand, has been undertaken to study the conformational features of the piperazine rings. The compound was synthesized by a modification of a procedure reported in the literature (Hodgkin, 1984). The molecular geometry is in agreement with that reported for similar molecules (Allen et al., 1987; Domenicano, Vaciago & Coulson, 1975; Schwarzenbach, 1968).

Each piperazine ring adopts a perfect chair conformation (Bassi & Scordamagila, 1977; Sbit, Dupont, Diderberg, Liegeois & Delarge, 1992) similar to that found in morpholine (Shanmuga Sundara Raj, Ponnuswamy, Shanmugam & Kandaswamy, 1993) and piperidine (Shanmuga Sundara Raj, Velmurugan, Ponnuswamy, Shanmugam & Kandaswamy, 1994). The substituents at the N atoms of the piperazine rings are in equatorial positions (Allinger, Carpenter & Karkowski, 1965). The molecular packing is based on van der Waals interactions.

Fig. 1. Perspective view of the molecule with atomic numbering scheme.

Experimental

Crystal data C₂₂H₃₈N₄O $M_r = 374.6$ Triclinic $P\bar{1}$ a = 9.720 (1) Å b = 9.945 (1) Å c = 12.172 (3) Å $\alpha = 84.53 (1)^{\circ}$ $\beta = 84.97 (2)^{\circ}$ $\gamma = 83.49 (1)^{\circ}$ $V = 1160.2 (3) Å^{3}$ Z = 2 $D_x = 1.07 \text{ Mg m}^{-3}$

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 20 reflections $\theta = 15-25^{\circ}$ $\mu = 0.45$ mm⁻¹ T = 298 K Transparent needle $0.3 \times 0.25 \times 0.2$ mm White

[†] DCB Contribution No. 836.

2008

$C_{22}H_{38}N_4O$

Data collection		C8-C11	1.549 (4)	N24—C27	1.443 (4)
Enraf–Nonius CAD-4	$R_{\rm int} = 0.010$	C12—N13 N13—C14	1.458 (3) 1.460 (3)	C25C26	1.503 (3)
$\omega/2\theta$ scans Absorption correction: none 3825 measured reflections 3619 independent reflections 2751 observed reflections $[I \ge 3\sigma(I)]$	$\sigma_{\text{max}} = 65$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = 0 \rightarrow 14$ 3 standard reflections frequency: 120 min intensity variation: <1.5%	$\begin{array}{c} C6-C1-07\\ C2-C1-07\\ C2-C1-C6\\ C1-C2-C20\\ C1-C2-C3\\ C3-C2-C20\\ C2-C3-C4\\ C3-C4-C8\\ C3-C4-C8\\ C3-C4-C5\\ C5-C4-C8\\ C5-C6\\ \end{array}$	119.0 (2) 120.3 (2) 120.7 (2) 120.9 (2) 120.8 (2) 123.0 (2) 120.2 (2) 117.0 (2) 122.8 (2) 122.8 (2)	C12N13C18 C12N13C14 C14N13C18 N13C14C15 C15N16C19 C15N16C19 N16C17C18 N13C18C17 C17C18 N13C18C17	109.4 (2) 112.2 (2) 108.4 (2) 110.5 (2) 110.9 (2) 111.3 (2) 108.7 (2) 112.4 (2) 111.7 (2) 111.0 (2) 111.0 (2)
Refinement		C1-C6-C5	119.0 (2)	C20-N21-C26	110.5 (2)
Refinement on F R = 0.061 wR = 0.071 S = 0.53 2751 reflections 396 parameters All H-atom parameters	$w = 1/[\sigma^{2}(F) + 0.406F^{2}]$ $(\Delta/\sigma)_{max} = 0.005$ $\Delta\rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering fac- tors from SHELX76	C5-C6-C12 C1-C6-C12 C4-C8-C11 C4-C8-C10 C4-C8-C9 C10-C8-C11 C9-C8-C11 C9-C8-C11 C9-C8-C10 C6-C12_N13	120.4 (2) 120.6 (2) 112.0 (2) 109.1 (2) 110.3 (2) 107.6 (2) 108.7 (2) 108.8 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.8 (2) 109.5 (2) 111.3 (2) 111.0 (2) 111.9 (2) 109.1 (2) 111.2 (3) 110.9 (2)
refined	(Sheldrick, 1976)	C0C12N13	113.8(2)	N21-C20-C25	110.1 (2)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$

	х	у	Z	B_{eq}
C1	0.3755 (2)	-0.0367 (2)	0.7229 (2)	3.91 (5)
C2	0.3057 (2)	-0.1031 (2)	0.6522 (2)	4.01 (5)
C3	0.1621 (2)	-0.0979 (2)	0.6688 (2)	4.08 (4)
C4	0.0848 (2)	-0.0250(2)	0.7492 (2)	3.94 (5)
C5	0.1579 (2)	0.0417 (2)	0.8165 (2)	4.12 (5)
C6	0.3024 (2)	0.0372 (2)	0.8045 (2)	4.03 (5)
07	0.5174 (1)	-0.0415 (2)	0.7113(1)	5.07 (5)
C8	-0.0744 (2)	-0.0210(2)	0.7610(2)	4.63 (7)
C9	-0.1170(3)	-0.1615 (3)	0.7970(3)	7.58 (11)
C10	-0.1314 (2)	0.0275 (3)	0.6486 (3)	6.56 (9)
C11	-0.1414 (3)	0.0790 (4)	0.8456 (3)	7.47 (8)
C12	0.3783 (2)	0.1120 (2)	0.8795 (2)	5.12 (7)
N13	0.3050 (2)	0.2421 (2)	0.9071(1)	4.00 (5)
C14	0.2860 (2)	0.3373 (2)	0.8093 (2)	4.65 (5)
C15	0.2117 (3)	0.4709 (2)	0.8417 (2)	5.17 (8)
N16	0.2906 (2)	0.5318 (2)	0.9166 (2)	4.73 (5)
C17	0.3114 (3)	0.4378 (2)	1.0130(2)	4.85 (7)
C18	0.3838 (2)	0.3030(2)	0.9825(2)	4.64 (5)
C19	0.2230 (3)	0.6624 (3)	0.9447 (3)	6.64 (8)
C20	0.3827 (2)	-0.1709(2)	0.5564 (2)	4.79 (5)
N21	0.5171 (2)	-0.2452(2)	0.5845(1)	4.19 (4)
C22	0.6021 (2)	-0.2814(2)	0.4845 (2)	5.09 (7)
C23	0.7369 (3)	-0.3597 (3)	0.5117 (2)	5.70 (8)
N24	0.7144 (2)	-0.4820(2)	0.5832(2)	5.80(7)
C25	0.6325 (3)	-0.4447 (2)	0.6835 (2)	5.55 (8)
C26	0.4951 (2)	-0.3687 (2)	0.6569 (2)	4.86 (5)
C27	0.8436(4)	-0.5607(3)	0.6085 (4)	8.83 (13)

Table 2. Selected geometric parameters (Å, °)

C1-C2	1.396 (3)	N13-C18	1.460 (3)
C1—C6	1.389 (3)	C14-C15	1.508 (3)
C107	1.370 (2)	C15—N16	1.456 (4)
C2—C3	1.389 (3)	N16-C17	1.443 (3)
C2-C20	1.502 (3)	N16-C19	1.445 (4)
C3—C4	1.395 (3)	C17—C18	1.505 (3)
C4—C5	1.389 (5)	C20N21	1.477 (3)
C4—C8	1.538 (3)	N21C22	1.461 (3)
C5-C6	1.395 (3)	N21C26	1.467 (3)
C6C12	1.518 (3)	C22—C23	1.493 (3)
C8—C9	1.516 (4)	C23—N24	1.453 (3)
C8C10	1.537 (4)	N24—C25	1.453 (3)

Cell refinement and data reduction: *SDP* (Frenz, 1978). Structure solution: *SHELXS86* (Sheldrick, 1985). Structure refinement: *SHELX76* (Sheldrick, 1976). Molecular diagrams: *PLUTO* (Motherwell & Clegg, 1978). Software used to prepare material for publication: *PARST* (Nardelli, 1983). Computers used: VAX 730, MicroVAX II.

SSSR thanks the University of Madras for providing a fellowship.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: HA1065). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Allinger, N. L., Carpenter, J. G. D. & Karkowski, F. M. (1965). J. Am. Chem. Soc. 87, 1232–1236.
- Bassi, I. W. & Scordamagila, R. (1977). Macromol. Chem. 178, 2063–2070.
- Domenicano, A., Vaciago, A. & Coulsun, C. A. (1975). Acta Cryst. B31, 221-234.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft Univ. Press.
- Hodgkin, J. H. (1984). Aust. J. Chem. 37, 2371-2378.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sbit, M., Dupont, L., Dideberg, O., Liegeois, J. F. & Delarge, J. (1992). Acta Cryst. C48, 1851–1853.
- Schwarzenbach, D. (1968). J. Chem. Phys. 48, 4134-4140.
- Shanmuga Sundara Raj, S., Ponnuswamy, M. N., Shanmugam, G. & Kandaswamy, M. (1993). J. Crystallogr. Spectrosc. Res. 23, 607-610.

- Shanmuga Sundara Raj, S., Velmurugan, D., Ponnuswamy, M. N., Shanmugam, G. & Kandaswamy, M. (1994). J. Chem. Cryst. 24, 187-191.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 2009–2010

4-Chloro-2,6-bis(morpholinomethyl)phenol

S. SHANMUGA SUNDARA RAJ, D. VELMURUGAN* AND E. SUBRAMANIAN

Department of Crystallography and Biophysics, † University of Madras, Guindy Campus, Madras 600 025. India

M. KANDASWAMY

Department of Inorganic Chemistry, University of Madras, Guindy Campus, Madras 600 025. India

(Received 20 May 1993; accepted 10 January 1994)

Abstract

In the title compound, $C_{16}H_{23}ClN_2O_3$, both morpholino rings adopt chair conformations with an angle of 49.4 (1)° between their mean planes. The maximum puckering amplitude of the morpholino rings is calculated as $\varphi_T = 0.57$ Å for both rings. The molecules are held together by van der Waals forces and one C-H-O hydrogen bond of 3.298 (2) Å.

Comment

The ligand was prepared by a modification of a procedure reported in the literature (Hodgkin, 1984). employing the Mannich reaction. Each morpholino ring assumes a perfect chair conformation. The molecular geometry is in agreement with that of similar molecules except that the average C-O bond length in the morpholino rings, 1.419 Å, is slightly greater than the literature value of 1.364 Å (Allen et al., 1987; Swaminathan, Sundaralingam. Chattopathyaya & Reese, 1980; Baydar, Boyd, Stride Sundara & Lindley, 1984; Shanmuga Rai. Ponnuswamy, Shanmugam & Kandaswamy, 1993; Ianelli et al., 1992a,b). The mean planes passing through the four C atoms of the morpholino rings A and B make dihedral angles of 67.4 (1) and 70.3 (1)°, respectively, with the plane of the phenyl ring, and are inclined to each other at $49.4(1)^{\circ}$.

† DCB Contribution No. 834.

An intermolecular short contact between the atoms C9 and O18 [-x+1, -y, -z+1]; 3.298 (2) Å] is suggestive of a C-H-O hydrogen bond. In addition, intramolecular contact distances involving atoms C14 and O21 [2.851 (2) Å], and N8 and O21 [2.750 (2) Å] are suggestive of hydrogenbonded interactions. The packing of the molecules is stabilized mainly by van der Waals interactions.

Fig. 1. Perspective view of the molecule with atomic numbering scheme.

Experimental

Crystal data	
$C_{16}H_{23}ClN_2O_3$	Cu $K\alpha$ radiation
$M_r = 326.82$	$\lambda = 1.5418$ Å
Monoclinic	Cell parameters from 22
$P2_1/c$	reflections
a = 10.798 (2) Å	$\theta = 15-25^{\circ}$
b = 10.771 (3) Å	$\mu = 2.18 \text{ mm}^{-1}$
c = 14.235 (4) Å	T = 295 K
$\beta = 94.65 (2)^{\circ}$	Needle
V = 1650.1 (7) Å ³	$0.25 \times 0.22 \times 0.15$ mm
Z = 4	White
$D_x = 1.32 \text{ Mg m}^{-3}$	

Data collection

Enraf-Nonius CAD-4 $R_{int} = 0.013$ $\theta_{\rm max} = 70^{\circ}$ diffractometer $h = -13 \rightarrow 13$ $\omega/2\theta$ scans $k = 0 \rightarrow 13$ Absorption correction: empirical $l = 0 \rightarrow 17$ $T_{\min} = 0.984, T_{\max} =$ 3 standard reflections 0.999 3329 measured reflections 3065 independent reflections 2803 observed reflections $[I \geq 3\sigma(I)]$